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Abstract 

Convolutions are computationally intensive mathematical operations used in convolutional 
neural networks (CNNs) and image processing. Convolution operations are typically delegated 
to GPUs due to their ability to highly parallelize matrix multiplication operations. In recent 
years, silicon photonics has shown promise in being the next generation of computing hardware 
that can operate at ultrafast speeds. In particular, the neuromorphic photonic broadcast-and-
weight architecture has been able to implement recurrent neural networks while operating at 
gigahertz frequencies. Inspired by the principles of broadcast-and-weight, this thesis proposes 
two photonic architectures that are capable of performing convolution operations. The first 
architecture, called DEAP, is specialized for implementing convolutional neural networks 
whereas the second, DEAP-GIP, is specialized for general-purpose image processing tasks. 
DEAP is estimated to perform convolutions between 2.8 and 14 times faster than a GPU while 
roughly using 0.75 times the energy consumption. Additionally, DEAP-GIP is estimated to 
operate 4.6 to 68 times faster than a GPU while using 2.3 times the energy consumption. The 
largest bottlenecks for both of these architectures are from the I/O interfacing with digital 
systems via digital-to-analog converters (DACs) and analog-to-digital converters (ADCs). If 
photonic DACs [1] and ADCs [2] are to be built with higher bit-precisions, the speedup over 
GPUs could be even higher. Overall, silicon photonics has the potential to outperform 
conventional electronic hardware for convolutions while having the ability to scale up in the 
future. 
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1 Introduction 

Convolutions are fundamental mathematical operations used in image processing and 

convolutional neural networks (CNNs). In image processing, convolutions are used for 

creating visual effects such as a gaussian blur or for more complicated algorithms like Canny 

edge detection [3]. In CNNs, convolutions are used for state-of-the-art computer vision and 

machine learning algorithms such as real-time object detection [4, 5]. One of the challenges 

with convolutions is that they are computationally intensive operations, taking up 86% to 94% 

of execution time for CNNs [6]. For heavy workloads, convolutions are typically run on 

graphical processing units (GPUs), as they are able to perform many mathematical operations 

in parallel.  

An emerging alternative to GPU computing is optical computing using silicon 

photonics. Silicon photonics is a technology that allows for the implementation of photonic 

circuits by using the existing complementary-metal-oxide-semiconductor (CMOS) platform 

for electronics [7]. In recent years, the silicon photonic based “broadcast-and-weight” 

architecture has been shown to perform multiply-accumulate operations at frequencies up to 

five times faster than conventional electronics [8]. Therefore, there is motivation to explore 

how photonics can be used to perform convolutions, and how it compares to GPU-based 

implementations.  

The goal of the thesis is to design a photonic architecture capable of performing 

convolutions at gigahertz operating frequencies. This architecture should be made up of 

existing and relatively mature photonic and electronic components. The speed and energy 

consumption of the photonic architecture will need to be estimated and benchmarked against a 

series of modern, high-end GPUs. Though overall the architecture can be designed to be 
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general purpose, the speed and energy estimation should use realistic hardware 

implementation values. Finally, a simulator will be written to verify that the architecture is 

able to properly perform a convolution.  

2 Convolution Background 

2.1 Convolutions for Image Processing 

A convolution of two discrete domain functions 𝑓 and 𝑔 is defined by: 

 
(𝑓 ∗ 𝑔)[𝑡] = * 𝑓[𝜏]𝑔[𝑡 − 𝜏]

-

./0-

 (1) 

In digital image processing, the convolution of an image 𝑫 with a kernel 𝑭 produces a 

convolved image 𝑶. An image is represented as a matrix of numbers with dimensionality 

𝐻 ×𝑊 where 𝐻	and 𝑊 are the height and width of the image. Each element of a matrix 

represents the intensity of a pixel at that particular spatial location. A kernel is a matrix of real 

numbers with dimensionality 𝑅 × 𝑅. The value of a particular convolved pixel is defined by: 

 
𝑶[𝑖, 𝑗] = **𝑭[𝑘, 𝑙]𝑫[𝑖 + 𝑘, 𝑗 + 𝑙]

@0A

B/C

@0A

D/C

 (2) 

Using matrix slicing notation, equation (2) can be equivalent represented as a dot product of 

two vectorized matrices: 

 𝑶[𝑖, 𝑗] = vec(𝑭)H ⋅ vec(𝑫[𝑖: 𝑖 + 𝑅, 𝑗: 𝑗 + 𝑅])H (3) 

A convolution operation can apply various effects to an input image based on the values of a 

kernel, as demonstrated in Figure 1. If the image has multiple colour channels, the same 

kernel is applied to each channel filter. A convolution reduces the dimensionality of the input 
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image to 𝐻 − 𝑅 + 1 × 𝐻 − 𝑅 + 1, so a padding of zero values is normally applied around the 

edges of the input image to counteract this.  

 

Figure 1 - Convolutions in image processing 

2.2 Convolutional Neural Networks 

CNNs are a type of neural network that were developed for image recognition tasks. A CNN 

consists of some combination of convolutional, nonlinear, pooling and fully connected layers 

[9]. Convolutional neural networks are trained by changing the values of the kernels, 

analogous to how feedforward neural networks are trained by changing the weighted 

connections [10]. For CNNs, a convolution operation is defined as: 

 𝑂[𝑖, 𝑗] = vec(𝑭)H ⋅ vec(𝑫[𝑖 ∗ 𝑆: 𝑖 ∗ 𝑆 + 𝑅, 𝑗 ∗ 𝑆: 𝑗 ∗ 𝑆 + 𝑅, : ])H (4) 

where the input 𝐷 has dimensionality 𝐻 ×𝑊 × 𝐶, kernel 𝐹 has dimensionality 𝑅 × 𝑅 × 𝐶 and 

𝐶 refers to the number of channels within the input image. The additional parameter 𝑆 is 
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referred to as the “stride” of the convolution. This convolution is similar to the one described 

in equation (3), except that the outputs from each channel are summed together in the end and 

that the stride parameter is always equal to 1 in image processing. The dimensionality of the 

output feature is QR0@
S
+ 1T × QU0@

S
+ 1T × 𝐾, where 𝐾 is the number of different kernels 

applied to an image. Table 1 contains a summary of all the convolutional parameters described 

so far. 

Table 1 - Summary of Convolutional Parameters 

Parameter Meaning 
𝑁  Number of input images 
𝐻  Height of input image including padding 
𝑊  Width of input image including padding 
𝐶	   Number of input channels 
𝑅   Edge length of kernel 
𝐾  Number of kernels 
𝑆  Stride 
  

 

2.2.1 The Convolutional Layer using Matrix Multiplications 

A GPU is a specialized hardware unit that is capable of performing a single mathematical 

operation on large amounts of data at once. This parallelization allow GPUs to compute 

matrix-matrix multiplication at speeds much higher than a CPU [11]. The convolution 

operation defined by (4) can be generalized into a single matrix-matrix multiplication [12]. 

This is shown in Figure 2, where the 𝐾 kernels are transformed into a matrix of 

dimensionality 𝐾 × 𝐶𝑅X and the image is transformed into a matrix of dimensionality 

𝐶𝑅X × 𝑁 QR0@
S
+ 1T QU0@

S
+ 1T. 
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Figure 2 - Performing a convolution as a matrix-matrix multiplication. Image was modified 
from [12]. 

3 Silicon Photonics Background 

3.1 Waveguides 

Waveguides are manufactured on the silicon photonics platform by surrounding a silicon core 

with a silicon dioxide cladding. Since silicon has a high index of refraction, 𝑛Z[ = 3.5, 

compared to its oxide, 𝑛Z[^_ = 1.5, the waveguide can be manufactured to have a width 

between 400	nm and 1000	nm while having a thickness of 220	nm. These waveguides have 

a bend radius of 5	µm and can support TE and TM polarized wavelengths between 1.5	µm 

and 1.6	µm [7]. Shows a scanning electron microscope image of a silicon waveguide and the 

TE mode propagation. 
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Figure 3 - Left: Scanning electron microscope image of silicon waveguide. Right: TE 
propagation of a similar waveguide. Both images taken from [13].  

3.2 Microring Resonators 

The ability for silicon waveguides to micrometer sized turning radiuses allows for the creation 

of microring resonators (MRRs). An MRR is a circular waveguide that is coupled with either 

one or two waveguides. The single waveguide configuration is called an all-pass MRR 

whereas the double waveguide configuration is called the add-drop resonator, as shown in 

Figure 4.  

 

Figure 4 - All-pass and add-drop MRRs 

The light from the waveguide is into transferred into the ring via directional coupler and then 

recombined. The effective index of refraction between the waveguide and the MRR and the 
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circumference of the MRR cause the recombined wave to have a phase shift, thereby 

interfering with the intensity of original light. Defining 𝑅 as the radius of the ring and 𝑛ghh is 

the effective index of refraction between the ring and waveguide, the resonance frequencies of 

a particular MRR are [13]: 

 𝜆j =
2𝜋𝑅𝑛ghh

𝑚 , 𝑚 ∈ ℕoC (5) 

In order get the transmission of an MRR independent of wavelength, one defines the phase as: 

 
𝜙 =

4𝜋X𝑅𝑛ghh
𝜆 = 	2𝜋𝑅𝑛ghh

𝜔
𝑐  (6) 

The transfer function of the intensity of the light coming out through port with the light going 

into the input port of the all-pass resonator is described by: 

 
𝑇t(𝜙) =

𝑎X − 2𝑟𝑎 𝑐𝑜𝑠(𝜙) + 𝑟X

1 − 2𝑟𝑎	𝑐𝑜𝑠(𝜙) + (𝑟𝑎)X (7) 

where 𝑟 is the self-coupling coefficient and 𝑎 is the propagation loss from the ring and the 

directional coupler. For the add-drop MRR, the transfer function of the intensity of the 

through port light with respect to the input light is: 

 
𝑇y(𝜙) =

(𝑟𝑎)X − 2𝑟X𝑎 𝑐𝑜𝑠(𝜙) + 𝑟X

1 − 2𝑟X𝑎 𝑐𝑜𝑠(𝜙) + (𝑟X𝑎)X (8) 

and the transfer function of the intensity of the drop port light with respect to the input light is: 

𝑇z(𝜙) =
(1 − 𝑟)X𝑎

1 − 2𝑟X𝑎 𝑐𝑜𝑠(𝜙) + (𝑟X𝑎)X (9) 

In the case where the coupling losses are negligible, 𝑎 ≈ 1, the relationship between the add-

drop through and drop transfer functions is: 

 𝑇y = 𝑇z − 1	 (10) 



 
 Page 8 

Figure 5 demonstrates the Lorentzian line shape described by equations (9) and (10) in the 

domain 𝜙 ∈ [−𝜋, 𝜋] where 𝑎 = 1 and 𝑟 = 0.95. 

 

Figure 5 - Phase dependent transfer of MRR through port and drop port lines 

3.2.1 Wavelength Division Multiplexing and Optical Modulation 

Wavelength division multiplexing (WDM) is a technique where light of different wavelengths 

are travel through a single waveguide via an optical multiplexer. WDM also allows for 

multiplexed light travelling through a waveguide to be demultiplexed into several separate 

waveguides by wavelength. In silicon photonics, WDM is achieved by using add-drop MRRs 

[14]. Multiplexing using an MRR consists of coupling all of the light at MRR’s resonant 

wavelength from the input port into the drop port. If multiple MRRs share the same drop port, 

then that waveguide will contain a set of multiplexed wavelengths. Similarly, demultiplexing 

is achieved by coupling light at a MRR’s resonant frequency from a multiplexed waveguide 

into its own drop port. 

If the MRR receiving a multiplexed signal in the input port is tuned slightly off 

resonance from a particular wavelength, only a portion of light at that wavelength will come 

out of the through port. Therefore, intensity modulation of multiplexed light is possible by 
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changing the resonant wavelength of an MRR. From equation (6), a change in the resonant 

wavelength is possible by a change the effective index of refraction. Applying heat across the 

coupling waveguide and ring changes effective index of refraction due to of the thermo-optic 

effect of silicon. By using ohmic heating, the amount of light coming out of the through ports 

of an MRR can be controlled via an analog electronic signal [15]. It was calculated that 

around ~100 multiplexed wavelengths between 1.5	µm and 1.6	µm can be modulated using a 

typical MRR [15].  

4 Dot Products using Photonics 

4.1 Overall Architecture 

The fundamental operation of a convolution is the is dot product of two vectorized matrices. 

Therefore, one needs to understand how to compute a vector dot product using photonics 

before proposing an architecture of capable of performing convolutions. 

A wavelength multiplexed signal consists of 𝑘 electromagnetic waves, each with 

angular frequency 𝜔}. If it is assumed that each wave has an amplitude of 𝐸C, a power 

enveloping function 𝜇} whose modulation frequency is significantly smaller than 𝜔}, then the 

slowly varying envelope approximation and a short-time Fourier transform can be used to 

derive an expression for the multiplexed signal in the frequency domain [15]: 

 
𝐸���(𝜔) = *𝐸C�𝜇}

D0A

}/C

𝛿(𝜔 − 𝜔}) (11) 

In this model, 𝛿(𝜔 − 𝜔}) is the Dirac delta function and 𝜇} ≥ 0 since power envelopes cannot 

represent negative values. If the enveloping function is prevented from amplifying the electric 

field, 𝜇} can further restricted to the domain 0 ≤ 𝜇} ≤ 1. Next, given the tunable linear filters 
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𝐻�(𝜔) and 𝐻0(𝜔) such that when the interact with the multiplexed fields, the following 

weighted signals are created: 

 𝐸�0(𝜔) = 𝐻0(𝜔)𝐸���(𝜔) (12) 

 𝐸��(𝜔) = 𝐻�(𝜔)𝐸���(𝜔) (13) 

Assuming that the two signals are fed into a balanced photodiode with spectral response 

𝑅(𝜔), the induced photocurrent is described by: 

 𝑖�� = � 𝑑𝜔	𝑅(𝜔)(|𝐸��(𝜔)|X − |𝐸�0(𝜔)|X)
-

0-
  

 = � 𝑑𝜔	𝑅(𝜔)(|𝐻�(𝜔)|X − |𝐻0(𝜔)|X)
-

0-
|𝐸���(𝜔)|X  

 =*𝑅(𝜔})(|𝐻�(𝜔})|X − |𝐻0(𝜔})|X)
D0A

}/C

𝐸�𝑟} (14) 

Assuming that	𝑅(𝜔) is roughly constant in the area of spectral interest, one can set 𝑥[𝑖] =

𝐸�𝑅�𝜇} and 𝑤∗[𝑖] = |𝐻�(𝜔})|X − |𝐻0(𝜔})|X resulting in a photocurrent equal to: 

 
𝑖�� = *𝑥[𝑖]𝑤∗[𝑖]

D0A

}/C

= 𝒙 ⋅ 𝒘∗ (15) 

The through ports and drop ports of an MRR can be used to implement the linear filters 𝐻� 

and 𝐻0 such that: 

 𝐻� = 𝑇z, 𝑇0 = 𝑇z (16) 

Then, using equation (10) one can then represent the weights as: 

 𝑤∗[𝑖] = 2𝑇z,}(𝜙}) − 1 (17) 

Since 𝜙} is tuned to the resonance frequency 𝜔} equations (9) and (17) are used to get: 

 
𝜙} = arccos�−

1
2𝑟X𝑎 �

2(1 − 𝑟)X𝑎
𝑤∗[𝑖] + 1 − 1 − (𝑟X𝑎)X�� (18) 
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From equation (17), it can be seen that 𝑤}∗ can be between −1 and 1 since 𝑇z is a passive filter 

that can only represent values between 0 and 1. In order perform a dot product with a weight 

vector 𝒘 whose components are not limited to the range −1 to 1, a gain 𝑔 to can be applied to 

the photocurrent such that: 

 
𝒙 ⋅ 𝒘 = 𝑔𝒙 ⋅ 𝒘∗ = 𝑔*𝑥[𝑖]𝑤∗[𝑖]

D0A

}/C

= 𝒙 ⋅ 𝒘∗ (19) 

 𝑔 = 𝑚𝑎𝑥
C�}�D0A

|𝑤[𝑖]| (20) 

 𝒘 = 𝑔𝒘∗ (21) 

assuming each 𝜙} corresponds to a weighting of 𝑤}∗. This electronic gain can be performed 

using a transimpedance amplifier (TIA). A diagram of the electro-optic architecture described 

in this section is presented in Figure 6. From now on, this amalgamation of electronic and 

optical components is referred as a photonic weight bank (PWB). PWBs similar to the one in 

Figure 6 have been successfully implemented in the past [15, 16, 17]. 

 

Figure 6 – An electro-optic architecture for performing dot products 

4.2 Representing Negative Inputs 

The formulation described in equations (11), (14) and (15) describes a simple normalized 

encoding scheme that allows 𝑥[𝑖] to represent values between 0 and 1. However, it is possible 
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to represent values between −1 and 1. This is achieved by modifying the power enveloping 

function to 𝜇} =
A
X
(𝑥} + 1). If the same set of derivations is followed with the same equation 

(19) is modified to:  

 
𝑔�*𝑥[𝑖]𝑤∗[𝑖]

D0A

}/C

+*𝐸�𝑅�𝑤∗[𝑖]
D0A

}/C

� (22) 

The second term in this sum is a predictable bias current term that conceptually be subtracted 

before feeding into the TIA. This is a disadvantage of supporting negative inputs, as additional 

optical or electronic control circuitry would need to be designed. Another trade-off is a loss in 

precision due to a larger range of inputs needing to be represented, analogous to the loss in 

precision with signed integers for classical computing.  

 

4.3 Throughput and Size Estimation  

The time takes for light to propagate from the MUX to before the PDs is: 

 𝑡yj�y =
𝑘2𝜋𝑟�@@

𝑐  (23) 

Where 𝑐 is speed of light 2𝜋𝑟�@@ is the circumference of the MRR and 𝑘 is the number of 

MRRs. Assuming 100 MRRs with a radius of 10	µm [15, 18], the PWB gets a propagation 

time of ~21	ps and an throughput of A
.� ¡�

= 50	GS/s. The bottlenecks come from the 

balanced PDs has a throughput of	25	GS/s [19] and the TIA has a throughput of 10	GS/s [20].	

An individual MRRs can be modulated at speeds of 128	GS/s [18], meaning that the 

modulation frequency of the MRRs does not bottleneck the throughput of the PWB. 
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5 Photonic Convolutions for CNNs 

5.1 A Top-down View 

The goal of this section is to present a photonic architecture capable of performing 

convolutions for CNNs. The architecture being proposed here takes inspiration from a 

previous approach called “PCNNA” [21], but goes a step further by allowing for greater 

parallelization. This new architecture is called DEAP, standing for “Digital Electronics and 

Analog Photonics”. 

Figure 7 provides a high-level overview of the proposed architecture. For convenience, 

optical components are drawn with a blue outline and electronic components are drawn with a 

black outline. The idea is that one would represent the input values by modulating the 

intensities of a group of lasers with identical powers but unique wavelengths. These 

modulated inputs would be sent into an array of photonic weight banks which would then 

perform the convolution for each channel. Finally, the outputs of the weight banks would be 

summed using a voltage adder, which produces the convolved feature. The interfacing of 

optical components with electronics would be facilitated by the use of DACs and ADCs, while 

the storage of output and retrieving of inputs would be achieved by using GDDR SDRAM. 
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Figure 7 - Block diagram of DEAP architecture 

 In Table 5, we define some bounding parameters for DEAP. These bounding 

parameters represent the range of convolutional parameters that a particular implementation of 

DEAP can support. If a convolutional parameter described in Table 1 does not have a 

complementary bounding parameter, it means that the DEAP architecture can support for 

arbitrary values of said convolutional parameter.  

Table 2 - DEAP bounding parameters 

Parameter Meaning 
𝐶�  Maximum number of input channels. 
𝑅�  Maximum kernel edge length 
  

 

5.2 Producing a Single Convolved Pixel 

For now, we only consider an architecture that can produce one convolved pixel at a 

time. To handle convolutions for kernels with dimensionalities up to 𝑅� × 𝑅� × 𝐶�, we will 

require 𝑅�X 	lasers with unique wavelengths since a particular convolved pixel can be 

represented as the dot product of two 1 × 𝑅�X  vectors. To represent the values of each pixel, 

we require 𝐶�𝑅�X  modulators (one per kernel value) where each modulator keeps the intensity 
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of the corresponding carrier wave proportional to the normalized input pixel value. Figure 8 

shows what such an architecture would look like. The 𝑅�X  lasers are multiplexed together 

using WDM, which is then split into	𝐶� separate lines. On every line, there are 𝑅�X  DAC-

controlled all-pass MRRs, resulting in 𝐶�𝑅�X  MRRs in total. Each WDM line, 𝐿D, will 

modulate the signals corresponding the a subset of 𝑅�X  pixels on channel	𝑘, meaning that the 

modulated wavelengths on a particular line correspond to the pixel inputs 𝑫[𝑖: 𝑖 + 𝑅�, 𝑗: 𝑗 +

𝑅�, 𝑘] where 𝑘	𝜖	[0, 𝐶� − 1]. 

 

 

Figure 8 – DEAP input representation with photonics 

A summary of the number of required components in presented in Table 3. The phase for an 

all-pass resonator corresponding to a particular intensity modulation value can be computed 

by using equation (7): 
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𝜙D,B = arccos �−

𝐷[𝑘, 𝑙](1 + (𝑟𝑎)X) − 𝑎X − 𝑟X

2𝑟𝑎(1 − 𝐷[𝑘, 𝑙]) �	 (24) 

resulting in a modulated input where, 

 𝐷[𝑘, 𝑙] = 𝑇t¨𝜙D,B©|𝐸�|X	 (25) 

In order to represent negative inputs, the left-hand side of equation (25) can be set to 

A
X
(𝐷[𝑘, 𝑙] + 1) as described in section 4.2. 

Table 3 - Required components for DEAP input representation 

Component Required Number 
Number of Wavelengths 𝑅�X   
MRR modulators 𝐶�𝑅�X   
WDM Lines 𝐶�  

 

The 𝐶� WDM lines will then be fed into an array of 𝐶�	PWBs. Each PWB will contain 

𝑅�X  MRRs with the weights corresponding to the kernel values at a particular channel. For 

example, 𝑊𝐵D should contain the vectorized weights for the kernel 𝑭[: , : , 𝑘]. Each MRR 

within a PWB should be tuned unique the resonant wavelength within the multiplexed signal. 

This architecture is shown in Figure 9, with the summary of parameters in Table 5. The 

outputs of the weight bank array are 𝐶� electrical signals, each proportional to the dot product 

𝑭[: 𝑅�, : 𝑅�, 𝑘] ⋅ 𝑫[: , : , 𝑘]. To perform a convolution with a kernel edge length less than 𝑅�, 

one can set 𝑭[𝑅 + 1: , 𝑅 + 1] to zero.  



 
 Page 17 

 

Figure 9 – Applying the kernel with photonics for DEAP 

 

Table 4 – DEAP required components for applying kernel 

Component Required Number 
Photonic Weight Banks 𝐶�  
MRR modulators per PWB 𝑅�X   

 

In order to get to equation (4), the signals from the weight banks need to be added 

together. This can be achieved using a passive voltage adder, as shown in Figure 10. The 

output from this adder will therefore be the value of a single convolved pixel which will be 

converted into a digital signal using an ADC. 
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Figure 10 – Passive voltage adder design 

5.3 Performing a Full Convolution 

In the previous section, we have discussed how DEAP can produce a single convolved pixel. 

In order to perform a convolution of arbitrary size, one would need to stride along the input 

image and readjust the modulation array. Since the same kernel is applied across the set of 

inputs, the weight banks do not need to be modified until a new kernel is applied. Figure 11 

demonstrates this process on an input with 𝑆 = 1. To handle 𝑆 > 1, the inputs being passed in 

to DEAP should also be strode accordingly. In this approach, the inputs should have been zero 

padded before being passed into DEAP.  In pseudocode, performing a convolution with 𝐾 

filters can be implemented as shown in Algorithm 1. 
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Algorithm 1 - Convolutions for CNNs using DEAP 
function convolve(D, F, R, O, S, H, W) do 
    for (k = 0; k < K; k = k + 1) do 
        load kernel weights from F[:, :, :, k] 
        for (h = 0; h < H – R + 1; h = h + S) do 
            for (w = 0; w < W – R + 1; w = w + S) do 
                load inputs from D[h:min(h+R, H), w:min(w+R, W), :] 
                perform convolution 
                store results in O[h/S, w/S, k] 
            end 
        end 
    end 
end 

 

 

Figure 11 - Performing a convolution using DEAP 

The DEAP architecture also allows for parallelization by treating the photonic architecture 

proposed in the previous section as a single output “convolutional unit”. However, by creating 

𝑛¬�t­ instances of these convolutional units, you could produce 𝑛¬�t­ pixels per cycle by 

passing in the next set of inputs per unit. This is demonstrated in Figure 12 for 𝑛¬�t­ = 2. The 

computation of output pixels can be distributed across each convolutional unit, resulting in a 

runtime complexity of 𝑂 ® ¯RU
S_t°¡±²

³.  
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Figure 12 - Performing a convolution with two convolutional units 

5.4 Throughput and Energy Estimation 

As discussed in section 4.3, the throughput of a PWB is around 5	GS/s. The DACs [22] and 

ADCs both [23] operate at 5	GS/s and support to 7-bits. The GDDR6 SDRAM operates at 

16	G with a 256-bit bus size [24]. Consequently, the speed of the system is limited by the 

throughput of the DACs/ADCs, resulting in DEAP producing a single convolved pixel at 

5	GS/s or 𝑡 = 200	ps. 

The energy used by a single DEAP convolutional unit depends on the 𝑅� and 𝐶� 

parameters. The 100-wavelength limitation for MRRs constrains the maximum 𝑅� to be 10 as 

each multiplexed waveguide will store 𝑅�X  signals. The number of MRRs used in the 

modulator array is equal to 𝑅�X 𝐶�, meaning that only certain 𝐶� and 𝑅�X  values are allowed 

for a finite number of MRRs. Assuming that a maximum of 1024 MRRs can be manufactured 

in the modulator array, allowing a convolutional unit to support a large kernel size with a 

limited number of channels, 𝑅� = 10, 𝐶� = 12, or a small kernel size with a large number of 

channels, 𝑅� = 3, 𝐶� = 113. We will consider both edge cases to get a range of energy 

consumption values. For the smaller convolution size, we will have 𝑅�X  lasers, 𝑅�X 𝐶� MRRs 
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and DACs in the modulator array,	𝑅�X 𝐶� MRRs and 𝐶� TIAs in the weight bank array and 

one ADC to convert back into digital signal. With 100	mW per laser, 19.5	mW per MRR, 

26	mW per DAC, 17	mW per TIA [20] and 76	mW	per ADC, we get an energy usage of 

112W for the large kernel size and 95W for the smaller kernel size. Therefore, we estimate a 

single convolution unit to use around ~100W when 1024 modulators are used to represent 

inputs. 

6 Photonic Convolutions for General Image Processing 

6.1 Rationale for a second approach 

In section 5, an architecture for performing convolutions was proposed. This architecture is 

optimized for convolutional neural networks in which the number of channels for an image 

can reach an arbitrary value. In image processing, convolutions are only applied to a single 

channel with stride always equal to 1. In this section, we propose an alternate photonic 

architecture, “DEAP-GIP”, that is specifically optimized for general image processing (GIP) 

workloads. Where DEAP’s parallelization abilities are on channel-level matrix dot products, 

DEAP-GIP is parallelized by allowing for an entire convolution to happen in one step. We 

introduce additional bounding parameters described for this approach in Table 5. 

Table 5 – DEAP-GIP bounding parameters 

Parameter Meaning 
𝐻�  Maximum input image height 
𝑊�  Maximum input image height 
𝑅B  Minimum kernel edge length 
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6.2 Input Representation 

As before, to handle convolutions for kernels with dimensionalities up to 𝑅� × 𝑅� × 1, we 

will require 𝑅�X 	lasers with unique wavelengths. The assignment of lasers wavelengths to pixel 

indexes is done such that the pixel 𝐷[𝑖, 𝑗] will use 𝜆}	%	@·,¸	%	@· as its carrier wavelength. In 

the case where 𝐻�	%	𝑅� = 0 and 𝑊�	%	𝑅� = 0, each wavelength is shared an equal number 

of times. Otherwise, asymmetric wavelength assignment occurs, in which some wavelengths 

will get shared more than others. Though DEAP-GIP can support asymmetric wavelength 

assignment, manufacturing is simpler when the bounding parameters are chosen such that 

𝐻�	%	𝑅� = 0 and 𝑊�	%	𝑅� = 0. For this reason, the rest of the section assumes that 

symmetric wavelength assignment is used. Figure 13 demonstrates what the wavelength 

assignment should look like, where each cell represents an input pixel. Note how no matter 

which 𝑅 × 𝑅, 𝑅 ≤ 𝑅� submatrix is picked, each element will have a unique wavelength 

assigned to it. 
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Figure 13 - Wavelength assignment to pixel locations 

To represent the values of each pixel, 𝐻� ×𝑊� modulators are required to change the 

intensity of the corresponding carrier waves. Figure 14 shows what such an architecture would 

look like. 
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Figure 14 - DEAP-GIP input representation with photonics 

The 𝑅�X  lasers are multiplexed together, which is then split into 𝐻�𝑊�/𝑅�X  separate lines. On 

every line, there are 𝑅�X  all-pass MRRs, resulting in 𝐻�𝑊� MRRs in total. Modulator, 𝑀D,B, is 

set to correspond to the pixel value located at 𝐷[𝑘, 𝑙] and is tuned to the wavelength 

𝜆D	%	@·,B	%	@·. Each WDM line, 𝐿y,º, contain the modulated the signals corresponding to 

𝐷[𝑝 ∗ 𝐻�: 𝑝 ∗ 𝐻� + 𝑅�, 𝑞 ∗ 𝑊�: 𝑞 ∗ 𝑊� + 𝑅�] where 𝑝	𝜖	[0, 𝐻�/𝑅� − 1]  and 

𝑞	𝜖	[0,𝑊�/𝑅� − 1]. All of these lines are sent through a demultiplexer, resulting in 𝐻�𝑊� 

output signals, each corresponding to an input pixel. A summary of the number of required 

components in presented in Table 6. 

Table 6 - Required components for DEAP-GIP input representation 

Component Required Number 
Number of Wavelengths 𝑅�X   
MRR modulators 𝐻�𝑊�  
WDM Lines 𝐻�𝑊�/𝑅�X   
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6.3 Kernel Representation 

If we only want to support one kernel size, we could have (𝐻� − 𝑅� + 1)(𝑊� − 𝑅� + 1) 

photonic weight banks where weight bank 𝑊�,t is connected to the inputs 𝐷[𝑚:𝑚 +

𝑅�, 𝑛: 𝑛 + 𝑅�] for the range 𝑚	𝜖	[0, 𝐻� − 𝑅� − 1] and 𝑛	𝜖	[0,𝑊� − 𝑅� − 1]. Supporting 

smaller kernel sizes down to 𝑅B would require (𝐻� − 𝑅B + 1)(𝑊� − 𝑅B + 1) weight banks. 

This changes the assignment of weight banks to inputs such that 𝑊�,t is connected to the 

inputs 𝐷[𝑚:𝑚 + 𝑞, 𝑛: 𝑛 + 𝑞] where 𝑞 = min	(𝑅�, min(𝐻� −𝑚,𝑊� − 𝑛)) given the new 

range 𝑚	𝜖	[0, 𝐻� − 𝑅B − 1] and 𝑛	𝜖	[0,𝑊� − 𝑅B − 1]. Figure 15 give a visual representation 

of assigning inputs to weight banks.  

 

Figure 15 - DEAP-GIP input assignment to weight banks 
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Each photonic weight bank will consist of a number of MRRs between 𝑅BX and 𝑅�X  depending 

on their input connections. The weighting of each MRR should correspond to a value of a 

kernel, such that for a particular 𝑅, 𝑅B ≤ 𝑅 ≤ 𝑅�, the weights 𝑤[: 𝑅, ∶ 𝑅] will corresponds to 

the kernel values 𝐹[: , : ] and 𝑤[𝑅: , 𝑅: ] = 0. If a weight bank has fewer input connections than 

𝑅, then all of the weights should be set to 0. Following this approach allows us to change the 

size of the filter size without needing to design a whole new hardware implementation. This 

means that each PWB computes equation (4) for one particular output pixel. By having 

multiple weight banks, all of the output pixels can be computed in a parallel, at once. Figure 

16 presents a photonic architecture for applying the kernel.  

It should be noted that the outputs of the demultiplexer in Figure 14 will be shared 

across multiple weight banks, meaning the waveguides will need to be split. Each output 

waveguide from the DEMUXs in Figure 14 will be shared by up to 𝑅�X 	PWBs at a time. Since 

each waveguide is split 𝐻�𝑊�/𝑅�X  times during the first WDM, the intensity of a given laser 

will be attenuated by a factor of 1/𝐻�𝑊�. Assuming that the lasers operate at 100	mW, the 

power incident to a photodiode is equal to −4	dBm in the extreme case of 𝐻� = 𝑊� = 1000. 

Considering that photodiodes are sensitive to intensities down to −25	dBm, the reduction in 

input power will not be an issue. Another challenge with this approach is that manufacturing 

becomes more complicated as the waveguides need to be designed such that they do not 

intersect each other, though there has been some progress in manufacturing multi-planar 

waveguides using silicon photonics [25].  
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Figure 16 – Applying the kernel for DEAP-GIP 

A summary of the number of required components is presented in Table 7 

Table 7 - DEAP-GIP required components for applying kernel 

Component Required Number 
Photonic Weight Banks (𝐻� − 𝑅B + 1)(𝑊� − 𝑅B + 1)  
MRR modulators per PWB Between 𝑅BX and 𝑅�X  
Inputs to PWB Between 𝑅BX and 𝑅�X  

 

6.4 Performing a Convolution 

Although DEAP-GIP has a more complicated hardware architecture than DEAP and is 

constrained for convolutions with 𝑆 = 1 and 𝐶 = 1, DEAP-GIP allows for massive 

parallelization for image processing workloads in which the same filter is applied to a large 

number of images. If image size is less than or equal to 𝐻� ×𝑊� all the inputs can be loaded 

into DEAP-GIP and the entire convolved feature will be produced. If the image size is greater 

than 𝐻� ×𝑊�, then the inputs can be loaded into the system as described in Algorithm 2. 

Figure 17 shows an example of a convolution on one input image where 𝐻� = 𝑊� = 8 but 
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𝐻 = 8 and 𝑊 = 14. Note how the massive parallelization abilities of DEAP-GIP allow the 

entire convolution to be performed using only two input cycles. This is due to the runtime 

complexity of DEAP-GIP being 𝑂 ® (R0@�A)(U0@�A)
(R·0@�A)(U·0@�A)

𝑁³. 

 

Figure 17 - Performing a convolution using DEAP-GIP 
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Algorithm 2 - Convolutions for Image Processing using DEAP-GIP 
function convolve(D, F, R, O, N, H, W, Hm, Wm) do 
    load kernel weights from F[:, :, 0] 
    let Hout = H – R + 1 
    let Wout = W – R = 1 
    for (n = 0; n < N; n = n + 1) do 
        for (h = 0; h < H – R + 1; h = h + Hm – R + 1) do 
            for (w = 0; w < W – R + 1; w = w + Wm – R + 1) do 
                load inputs from  
                    D[h:min(h + Hm, H), w:min(w + Wm, W), 0, n] 
                perform convolution 
                store results in 
                    O[h:min(h + Hm, H) – R + 1,  
                      w:min(w + Wm, W) – R + 1, 0, n] 
            end 
        end 
    end 
end 

 

6.5 Throughput and Energy Estimation 

DEAP-GIP uses the same components as DEAP, meaning that it has the same throughput of 

5𝐺𝑆/𝑠 assuming that all the input weights can be loaded in between the DACs clock cycles. 

Even though both approaches have the same throughput in terms of “samples”, DEAP-GIP is 

more performant because a “sample” refers to a larger domain of output pixels. 

 DEAP-GIP requires 𝑅�X  lasers, 𝐻�𝑊� MRRs and DACs in the modulator array, an 

upper bound of 𝑅�X (𝐻� − 𝑅B − 1)(𝑊� − 𝑅B + 1) MRRs and DACs in the weight bank array 

and (𝐻� − 𝑅B − 1)(𝑊� − 𝑅B + 1) TIAs and ADCs. The power consumption of the 

components are 100	mW per laser, 19.5	mW per MRR, 26	mW per DAC, 17	mW per TIA 

and 76mW	per ADC. With the assumption that 𝐻� = 𝑊� = 12, 𝑅B = 3 and 𝑅� = 7 we get a 

power consumption of 690	W. 
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7 Benchmarks 

7.1 Proof of Concept Simulation 

A high-level software simulator for DEAP and DEAP-GIP was developed. This simulator 

works by using the transfer function of the MRRs, through port and drop port summing 

equations at the balanced PDs and the TIA gain term to simulate a convolution. The simulator 

assumes that the MRRs can only be controlled with 7-bits of precision as that has been 

empirically observed in a lab setting. The simulations assume that the MRR self-coupling 

coefficient is equal almost 1 and equal to the loss, 𝑟 = 𝑎 = 0.99 [13]. The software does not 

attempt to model any sort of higher order errors due to shot, Johnson-Nyquist and flicker 

noise. Figure 18 shows an example of a gaussian blur convolution using Algorithm 1 for 

DEAP and Algorithm 2 for DEAP-GIP. The “convolve2d” [26] function in SciPy was used as 

the reference convolution implementation. The difference between DEAP and SciPy was 

quantified by taking the mean squared error (MSE) of each of the output pixels. The source 

code for the simulation is included Appendix A. 
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Figure 18 - DEAP and DEAP-GIP Simulation Results 

 

7.2 Estimated DEAP Performance 

DeepBench [27] is an empirical data set that contains how long various types of GPUs took to 

perform a convolution for a given set of convolutional parameters. The runtime of three of 

convolutional benchmarks for the GPUs presented in Table 8 were taken from the DeepBench 

dataset. Appendix A.1 contains the parameters used for each of these benchmarks.  

Table 8 - Benchmarked GPUs with power consumption 

GPU Power usage 
AMD Vega FE 375 W [28] 
AMD MI25 300 W [29] 
Nvidia Tesla P100 250 W [30] 
Nvidia GTX 1080Ti 250 W [31] 

Knowing that one DEAP convolutional unit can produce a pixel in 200	ps, an estimation for 

the runtime can be computed using equation (26): 
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 𝑡j�t.}�g = 200	ps ∗
𝑁𝐾
𝑛¬�t­

Â
𝐻 − 𝑅
𝑆 + 1Ã Â

𝑊 − 𝑅
𝑆 + 1Ã	 (26) 

The estimated DEAP runtimes using one and two convolutional units were plotted 

against actual DeepBench runtimes in Figure 19. From this, we can see that using two 

convolutional unit performs slightly better than all the GPU benchmarks. While mean GPUs 

power consumption is 295	W, DEAP with a single convolutional unit uses about 110	W. 

Therefore, DEAP can perform convolutions between 1.4 and 7.0 times faster than the mean 

GPU runtime while using 0.37 times the energy consumption. Using two convolutional units 

doubles the speed of DEAP, meaning that DEAP can be between 2.8 and 14 times faster than 

a conventual GPU while using almost 0.75 times the energy consumption. DEAP with a single 

unit performing at a speed somewhat similar to the GPUs is expected. 

 

Figure 19 - Estimated DEAP convolutional runtime compared to actual GPU runtimes from 
DeepBench benchmarks 
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7.3 Estimated DEAP-GIP Performance 

The same DeepBench dataset with the GPUs in Table 8 was used to provide a benchmark for 

DEAP-GIP. In this case, only the benchmarks compatible with the implementation described 

in section 6.5, meaning that 𝑆 = 1, 𝐾 = 1 and 3 ≤ 𝑅 ≤ 7. To estimate the runtime of DEAP-

GIP for a set of convolutional parameters, equation (27) was used. 

 
𝑡j�t.}�g = 200	ps ∗

(𝐻 − 𝑅 + 1)(𝑊 − 𝑅 + 1)
(𝐻� − 𝑅 + 1)(𝑊� − 𝑅 + 1)𝑁𝐾 (27) 

A plot of the DEAP-GIP’s estimated runtime against the actual DeepBench runtimes is 

presented in Figure 20 for these two particular benchmarks, DEAP-GIP has an estimated 

speedup of 4.5 and 68 times compared to the mean GPU performance. DEAP-GIP uses 

around 690	W of power, meaning that the increased speed comes at the expense of around 2.3 

times more energy consumption. 



 
 Page 34 

 

Figure 20 - Estimated DEAP-GIP convolutional runtime compared to actual GPU runtimes 
from DeepBench benchmarks 

8 Conclusion 

In this thesis, two photonic architectures for performing convolutions were proposed. The first 

approach, DEAP, is better suited for convolutional neural networks whereas the second, 

DEAP-GIP, is suited for general image processing. DEAP was estimated to be up 14 times 

faster than a GPU for convolutions while using almost half the energy consumption. A linear 

increase in processing speeds corresponds to a linear increase in energy consumption, making 

DEAP scalable. DEAP-GIP, which can only be run on single channel inputs with a 

convolutional stride of one, was estimated to be up 68 times faster than a GPU while using 3 

times more energy consumption. High level software simulations have shown that both DEAP 

and DEAP-GIP are theoretically capable of performing a convolution. The largest bottleneck 

to both these systems came from the I/O interfacing of the optical components to the digital 
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ones. While photonic DACs [1] and ADCs [2] have been built the past, these implementation 

have bit precisions too low for convolutions (< 3 bits). If higher bit precision photonic DACs 

and ADCs are able to be built, replacing the electronic components with optical ones can 

significantly decrease the runtime.  

In order to build these architectures in real life, there are a number of issues that still 

need to be solved. For one, electronically controlling the gain of the TIA requires the design 

of a voltage-controlled resistor, which can be implemented using field effect transistors [32]. 

There also needs to be control circuitry that routes the outputs of the SDRAM into the relevant 

DACs and from the ADCs into the SDRAM. Another issue is that DEAP and DEAP-GIP both 

process their data as analog signals, whereas GPUs perform floating point arithmetic. Though 

floating-point arithmetic does have some degree of error due to rounding in the mantissa, their 

errors are deterministic and predictable. On the other hand, the errors from photonics are due 

to stochastic shot, Johnson-Nyquist and flicker noises. However, artificially adding random 

noise to CNNs have been shown to reduce over-fitting [33], meaning that some degree of 

stochastic behaviour is tolerable in the domain of machine learning problems. Finally, MRRs 

have only been shown to have up to 7-bits of precision, which is significantly smaller than the 

range precision supported by even half-precision (16-bit) floating point representations. In 

conclusion, photonics have the potential to perform convolutions at speeds faster than top-of-

the-line GPUs while having a lower energy consumption. Moving forward, the greatest 

challenges to overcome have to do with increasing the precision of photonic components so 

that they are comparable to classical floating-point representations.  
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Appendix A.1 Benchmarking Calculations for DEAP and DEAP-GIP 

Table 9 contains the benchmarking parameters used in section 7.2. The speeds of the various 

GPUs were directly taken from [27], while the speed of the convolution was estimated using 

equation (26). Similarly, Table 10 contains the benchmarking parameters used in section 7.3 

while the speed of convolution was estimated using equation (27). In some of the benchmarks, 

the kernels edge lengths were not equal, hence the parameters “R_w” and “R_h” which 

correspond to the width and height of the kernels. For each of the selected benchmarks, the 

parameters 𝑅�X 𝐶� ≤ 1024, meaning that the convolutional is compatible with the DEAP 

implementations described in sections 5.4 and 6.5. 

Table 9 - Benchmarking parameters for DEAP 

W H C N K R_w R_h P S 
700 161 1 4 32 5 20 0 2 
112 112 64 8 128 3 3 1 1 
7 7 832 16 256 1 1 0 1 

 

Table 10 - Benchmarking parameters for DEAP-GIP 

W H C N K R_w R_h P S 

480 48 1 16 16 3 3 1 1 

700 161 1 16 64 5 5 1 2 

 

Appendix A.2 Selected DEAP simulator code 

The entire source code for the DEAP simulator can be found at: 

https://github.com/Viraj3f/DEAP. The following code simulates a dot product using a PWB: 
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class PWB: 
    """ 
    A simple, time-independent model of a pwb. 
    """ 
    def __init__(self, phaseShifts, outputGain): 
        self.phaseShifts = np.asarray(phaseShifts) 
        self.outputGain = np.asarray(outputGain) 
        self.inputSize = phaseShifts.size 
 
        mrr = MRRTransferFunction() 
        self._throughput = mrr.throughput(self.phaseShifts) 
        self._dropput = mrr.dropput(self.phaseShifts) 
 
    def _update(self, newPhaseShifts, newOutputGain): 
        assert self.inputSize == newPhaseShifts.size 
        self.phaseShifts = np.asarray(newPhaseShifts) 
        self.outputGain = np.asarray(newOutputGain) 
 
        mrr = MRRTransferFunction() 
        self._throughput = mrr.throughput(self.phaseShifts) 
        self._dropput = mrr.dropput(self.phaseShifts) 
 
    def step(self, intensities): 
        intensities = np.asarray(intensities) 
        if intensities.size != self.inputSize: 
            raise AssertionError( 
                    "Number of inputs ({}) is not " 
                    "equal to  number of weights ({})".format( 
                        intensities.size, self.inputSize)) 
 
        summedThroughput = np.dot(intensities, self._throughput) 
        summedDropput = np.dot(intensities, self._dropput) 
        photodiodeVoltage = summedDropput - summedThroughput 
 
        return self.outputGain * photodiodeVoltage 

 

The DEAP-GIP simulation code can be found at: 
https://github.com/Viraj3f/DEAP/blob/master/examples/DEAP-GIP.ipynb 

 

Appendix B. A Note on Semiconductor Optical Amplifiers 

Semiconductor optical amplifiers (SOA) allow for the amplification of optical signals at 

gigahertz frequencies [34] without the need to convert to the electronic domain. Therefore, it 

seems that using a SOA for a PWB would be a better solution than using a TIA. The issue is 

that the silicon is an indirect bandgap semiconductor where the optical gain is only greater 

than the free carrier absorption at temperatures below −250.15	°𝐶 [35]. The other option 

would be to use a direct bandgap semiconductor but integrating that with a silicon platform is 
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challenging because of lattice mismatch. Some progress has been made towards implementing 

SOA with silicon [36, 37], but these solutions are generally complicated and expensive, so 

they are not expressed here. That said, SOA could be a viable alternative to electronic 

amplification if the integration with silicon becomes more convenient in the future. 

 

Appendix C. Statement of Work 

I state that all the work related to this thesis was done by me after September 1st, 2018. The 

original goal of this thesis was to write a simulator for photonic neural networks capable of 

solving ordinary differential equations. All of the work completed in the fall term was related 

to that original goal. In the winter term, the goal of the thesis was changed to designing a 

photonic architecture that can perform convolutions. Therefore, all of the work described in 

this report was completed from January 2019 onwards.  

 

Appendix D. Floating Point Arithmetic using IEEE 754 

Note: The technical standard for this thesis was in the fall term when the original goal was to 

write a software simulation for photonic neural networks. 

All modern-day computer systems are built on top of the binary numeral system. Unsigned 

integers are directly represented using their base-2 representation, signed integers use two’s 

complement and characters commonly use UTF-8 encoding [38]. For real numbers, IEEE-754 

[39] is almost always used, as the most common instruction set architectures, x86 [40] for 

personal computers and servers and ARM [41] for embedded systems, both implement it.  

 IEEE-754 specifies that real numbers can represented in base-2 scientific notation by 

using single or double precision floats. The single precision format uses a 32-bit word to 
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represent a number, where bit 31 corresponds to the sign, bits 30 to 23 correspond to the 

exponent, and bits 22 to 0 correspond to the mantissa. The double precision format uses a 64-

bit word, where bit 63 corresponds to the sign, bits 62 to 52 correspond to the exponent, and 

bits 51 to 0 correspond to the mantissa. This allows mathematical operations like 

multiplication and exponentiation faster and simpler to implement on CPU hardware. The 

standard also supports special values like NaN and ±	 and defines how they operate with other 

floating-point values. 

 My thesis will require a large number of floating-point computations, so understanding 

how IEEE-754 works is important. For instance, division by zero results in NaN, and 

operations that include NaN will result in NaN. This means that all critical software 

components should handle NaN values in a safe matter. The trade-offs between single and 

double precision floating points need to be known: single precision floating points can only 

represent numbers from ±(2 − 20AXÆ) ∗ 2AXÇ ≈ 10ÆÈ, whereas double precision floating 

points can store values from ±(2 − 20ÉX) ∗ 2ACXÆ ≈ 10ÆCÈ.  Understanding the limitations of 

floating points is also important. Some decimals that round in base-10 notation do not round 

in base-2. This results in rounding errors. A simple example is the number 0.1, whose 

floating-point representation is stored as 0.10000000000000001 when using single floating-

point precision. Rounding errors can become larger as the number of floating operations 

increase. The degree to which rounding errors are handled are dependent on the amount of 

precision required by the application. If no rounding error can be tolerated, one solution would 

be to store decimals as strings of integers at the cost of higher computational complexity. In 

my thesis, such a high degree of precision is not needed. Floating point equality can be dealt 

with by checking if two values are equal to each other within some degree of error. Overall, 
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single precision floating points will suffice well, and if errors are found, double precision 

floating points can be used instead. 

 Understanding floating point calculations is also important since my thesis proposes an 

architecture that operates on analog signals. A major difference is that floating point errors are 

deterministic and reproducible, whereas analog errors are due to stochastic shot, thermal and 

Johnson-Nyquist noise. Therefore, any physical components that perform arithmetic on analog 

components need to use produce as little noise as possible. This implies means that analog 

arithmetic is better for stochastic systems such as a neural network, whereas that floating-

point arithmetic is better for deterministic systems like finance or banking. 
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